# Surveying ligand- and targetbased similarities within the Kinome

## Stephan Schürer & Steven Muskal



**) Eidogen** Sertanty

#### **Kinase SAR Knowledgebase – Hot Targets**



>362,000 SAR data points curated from >4,270 journal articles and patents >130 Bayesian QSAR Models



# Data Points

>500

>50

STE

CK1

AGC

>250

under 50

>30 000

>10,000

>5000 >2500

>1000

TKL

# **About Eidogen-Sertanty**

- Knowledge-Driven Discovery Solutions Provider
  - Formed in March 2005 when Sertanty (Libraria→Sertanty 2003) acquired Eidogen (Bionomix 2000)
  - >\$20M Invested in Technology Development
  - 12 FTE's
  - Worldwide Customerbase
  - Cash-Positive
- Chemogenomic Databases & Analysis Software
  - *TIP<sup>TM</sup>* Structural Informatics Platform
  - *KKB™* Kinase SAR and Chemistry Knowledgebase
  - CHIP<sup>™</sup> Chemical Intelligence Platform
- DirectDesign<sup>™</sup> Discovery Collaborations
  - In Silico Target Screening ("Target Fishing" and Repurposing)
  - Target and compound prioritization services
  - Fast Follower Design: Novel, Patentable Leads



## **TIP Algorithm Engine**





# **STRUCTFAST™**

 $STructure \ Realization \ Utilizing \ Cogent \ Tips \ From \ Aligned \ Structural \ Templates$ 

Basic Principle: Gaps known to exist should not be strongly penalized.



#### Leverages experimental structure and structural alignment data to create better alignments

1) Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831

2) STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967



# SiteSeeker<sup>TM</sup>

### Geometric Site-Finding Algorithms Find Many Pockets

But they don't know which pockets are important!

#### **Evolutionary Trace Approach**

Can't clearly define site boundary Not all conserved residues are functionally relevant

### SiteSeeker combines both methods

# **Reliability & Confidence**

We use proteins with apo- & co-crystal structures in the PDB to test the accuracy & reliability of method

Allows us to map SiteSeeker score to predict confidence!
(e.g. At this SiteSeeker score, 80% are "real" co-crystal sites)
→ Sites with <60% confidence are not stored in TIP</li>





### Weighted Clique Detection Algorithm

Importance of Points Related To Conservation In Multiple Sequence Alignment



Surface Atoms Assigned One of 5 Different Chemical Characters Matching points increase the *SiteSorter* similarity score



# **TIP Content**



Automatically updated with new models as the PDB grows

👤 Eidogen Sertanty

# Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

### > 4278 journal articles/patents

#### • KKB Content Summary (Q2-2008):

# of kinase targets: >390
# of SAR Data points: > 362,000
# of unique kinase molecules with SAR data: >120,000
# of annotated assay protocols: >16,000
# of annotated chemical reactions: >2,300
# of unique kinase inhibitors: >465,000 (~340K enumerated from patent chemistries)

#### KKB Growth Rate:

- Average **15-20K** SAR data points added per quarter
- Average 20-30K unique structures added per quarter



# Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

## Kinase Validation Set

Three sizable datasets freely available to the research community

http://www.eidogen-sertanty.com/kinasednld.php



## LIMK1 – ATP binding site comparison



The ATP site of LIMK1 shares a high level of homology with several well-studied kinases



# **Kinome by Sequence**

### **Kinase domain sequence similarities - MST**



# Kinome by SAR

### **Relating kinase targets by SAR**

- Relationships derived from Bayesian categorization models
  - Adopted from Schuffenhauer Org Biomol Chem 2004 3256
- Bayesian categorization models built within PipelinePilot:
  - Kinase enzyme assay data, activity cutoff pIC50 > 6.5; all other compounds "negative"
  - Functional group connectivity fingerprints length 4
  - ROC > 0.7
- Bayesian feature weights (~10,000 features) extracted for each model
- Correlation matrix determined between Bayesian vectors
- Visualization via minimum spanning trees (Kruskal algorithm)

### **Kinase SAR Bayesian models**



#### **Kinase target relationships by SAR – MST**



130 kinase models

MST – all "similarities" > 0.27

#### **SAR-based similarity vs. Sequence identity**



#### CDC2A and CHUK: > 90 ligands with activity against both targets



#### FGFR2 / FGFR3: no similar ligands

FCFP4 Tanimoto (all pairs)





## Kinome by structure binding site similarities

### **Relating kinases by ATP binding-site similarity**

- Human Kinase domain sequences extracted (Sugen, Swissprot, PFAM)
- Human Kinome (500 sequences) modeled using STRUCTFAST
  - Multiple models per sequence (subset of 263 presented here)
- Binding sites for all models computed (SiteSeeker)
- Binding site similarity scores computed (SiteSorter)
- Similarity scores normalized: AB\_Norm := AB / (AA + BB AB)
  - AB Site Similarity between sites A & B
  - AA / BB "Self Site" Similarity Scores
- Analysis and visualization with MST

#### **Kinase Site Similarity Relationships – MST**



### **Sequence vs. Site Similarity**



#### Similar sites – different sequences

- STE\_STE11\_MAP3K8: template 1u5rA
- TK\_Trk\_TRKA (NTRK1): template 1ir3A



### Similar sites – different site AA composition

- AGC\_MAST\_MAST4: template 1z5mA
- Other\_VPS15\_PIK3R4: template 1z5mA
- Site sequence similarity: 0.2
- Normalized (physicochemical) site similarity: 0.78



#### What did we learn?

- Expected global trend:Similar sequence results in physicochemical- and fold-similar binding sites
- Dissimilar sequences do not always result in different binding sites
- > Binding site similarities group in "patches" by domain sequence similarity
  - Subtle differences in site relationships among groups and sub-types
- Modeling templates influence results:
  - > For many kinases no experimental structures exist, but can be modeled
  - Growing body of structural information will optimize the picture
- Body of selective Kinase compounds continues to grow
- In principle, small molecules can be optimized to differentiate between very similar (sequence) kinases

### **Conclusions and Next steps**

- Quantifying similarity relationships within the Kinome can provide insight in early Kinase drug development
- Similarity within the Kinome should consider SAR-based and structurebased binding site similarity (v. domain sequence-based similarity)

#### Next steps include

- Analyze trends with respect to DFG-In/DFG-out
- Quantify template effects
- Investigate effects of site size and predicted vs. templated sites

### Acknowledgements

- Stephan Schürer
- Kevin Hambly
- Joe Danzer
- Brian Palmer
- Derek Debe
- Aleksandar Poleksic
- Accelrys/Scitegic Shikha Varma-O'Brien/Ton van Daelen

#### <u>Contact</u> Steven Muskal Chief Executive Officer smuskal@eidogen-sertanty.com

